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Abstract. This work addresses various ideas on the formulation of a reduced mathematical
model to the vibration of Bernoulli-Euler beams. The hypothesis of constant axial
deformation ε within each element allows the use of a single independent function (in this
paper, the axis rotation θ ) to generate the displacement field. This technique is used on
simply supported beams with pinned and roller end, applying nonconventional superposition
procedures to obtain the nonlinear equations of motion associated to the nonlinear vibration
of the first mode, both about the deformed and undeformed configuration. Results with
various numbers of elements are compared to those in the literature.
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1. INTRODUCTION

The establishment of nonlinear equations of motion referred to a few number of
generalized coordinates which still represent the physical behavior of the structure constitutes
a challenging research field. Its importance is related to the possibility of performing
parametric and instability analytical studies, which are practically impossible with large
degrees of freedom. Therefore, it is not enough to discretise the structure. One has to
drastically reduce the number of degrees of freedom. This procedure is called reduction
technique.

The authors have applied reduction techniques (André, Mazzilli & Pereira, 1999; André
& Mazzilli, 1996; and André, 1996) based on the definition of a nonlinear displacement field
about the deformed and undeformed configuration of equilibrium. The nonlinear displacement
field is obtained by superposing the equilibrium displacement field of a nonlinear static
analysis and the nonlinear displacement field of a combination of selected natural modes and
nonlinear terms derived from subsidiary conditions. Usually, one obtains the equilibrium
displacement field and the natural modes and frequencies by the finite element method. This
non-conventional superposition procedure has been successfully applied by the authors to the
nonlinear dynamic analysis of linear elastic beams and planar frames under holonomic
constraints and under the action of static and dynamic forces and support motions.



Several mathematical models may be derived from the Bernoulli-Euler beam theory. This
work presents one of these models, and applies it to obtain explicit nonlinear equations of
motion of the first natural mode both about the reference and deformed configuration of a
simply supported beam.

2. SOME RELEVANT EXPRESSIONS OF THE BERNOULLI-EULER BEAM
THEORY

Figure 1 presents geometrical parameters which define the transformation from the
reference configuration to the deformed configuration.

Figure 1 – Reference and deformed configuration of a beam

After some transformations, one may obtain the following expressions:
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where λ  is the stretching and is given by:
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The exact expression of the strain energy for engineering stress (proportional to engineering
strain) and for a displacement formulation is given by:
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where θ ′  is directly obtained from θ  and x is the coordinate along the reference configuration
of the beam. The gravitational potential energy is

∫−= dxmugP 2 (4)

where m is the linear density (mass per length). The kinetic energy is
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One may see from (1) and (2) that only two of the related functions ( ) ( ) ( )xxuxu θ and , 21 ′′
define the displacement field in a Bernoulli-Euler beam. The introduction of a subsidiary
condition allows the displacement field to be defined by a single function. We notice that
( )xu1  is not an option for an independent function, because it is of higher order than

( ) ( )xxu θ or 2  in any expansion of (1) or (2).

3. A DERIVED NONLINEAR MODEL FROM BERNOULLI-EULER BEAM
THEORY

We assume that the longitudinal deformation ε is constant in each element. Therefore, the
displacement field is defined by eitherθ(x) or u2(x). We consider that θ(x) is the best option
for the independent function.
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The medium value of ε for an element of length � starting at x0 is
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Expanding the first two expressions of Eq. (1) on θ, we establish the expressions for
longitudinal and transverse displacements on the bar axis

( ) ( )

( ) ( )





+−+=′

−





++−+=′

5
3

2

6
42

1

6
1

1
242

11

θθθε

θθθε

O

O

u

u

(8)

Considering Eq. (8), we notice that the definition of θ allows us to determine the
nonlinear displacement field.

Once we intend to analyze the effects of geometrical nonlinearities on the first vibration
mode, the nonlinear displacement field is defined by one single generalized displacement. The
dynamic rotation at the left end of the beam, q, was chosen as modal coordinate, and the total
displacement is the superposition of equilibrium dynamic displacements, meaning
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Once the displacement field is determined, the process to obtain the nonlinear equation
of motion is quite straightforward and can be summarized as follows.



First, the deformed configuration and the first linear mode about both reference and
deformed configuration are obtained; the authors used Adina finite-element system and 2-
node elements. Those results were used to generate the a rotation function θ for each element,

( ) ( ) ( ) ( ) ( )xNpxNpxNpxNpx 66553322 +++=θ (10)

where Ni(x) are quadratic interpolation polynomials generated by first order static analysis
procedures and ( ) modeeq

iii ptqpp ⋅+= are the displacements at the ends of the element.

Once θ  and then the resulting ( )tε  according to Eq. (7) are determined for each element,

( ) ( )xuxu 21 and ′′  according to Eq. (8) can be found and 21 and uu  are determined by algebraic
integration. Finally, the expressions for strain, potential and kinetic energy can be written and
the total energy of the bar will be the sum of the energy of each element. The Lagrangean is
then determined, and the nonlinear equation of motion is defined by the Euler-Lagrange
equation, and is given by
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4. CASE STUDY

The process was applied for the simply-supported beams shown on Figure 2 and Figure 3. For
each one of those beams, the equations were obtained under two sets of conditions: vibrations
about the reference configuration disregarding gravity influences and vibrations about the
deformed configuration under self weight load.

Figure 2 – pinned-pinned beam: physical and geometrical characteristics

Figure 3 – pinned-roller beam: physical and geometrical characteristics

A thorough evaluation of the results would only be possible after the integration of the
equations herein obtained, which is out of the scope of this work, but some of the coefficients
of the main terms of those equations are presented in tables 1 through 4.

Null coefficients are omitted and vibrations about the reference configuration are
compared to the results of Soares (1998). As a measure of the global convergence of the
model, the ratio between the equilibrium modal coordinate obtained (theoretically null) and
the equilibrium rotation at the beam end is also presented for the vibrations about the
deformed configuration.

x 0,002m
0,02m

0,61m

ρ = 2770kg/m³ E =7,33×1010N/m2

2 m

0 ,01 m

0 ,01 mx
ρ = 7800kg/m³ E = 2,1×1011N/m²



Table  1 – Pinned-end beam equation coefficients: first mode about reference configuration

ω² γ α ω
(rad/s)

Soares 6,2055E3 4,654E9 2,4847E0 78,77

2 el 6,254E3 1,729E8 2,18E-1 79,09
4 el 6,209E3 2,467E8 7,80E-2 78,80
6 el 6,207E3 2,555E8 3,82E-2 78,78
8 el 6,206E3 2,588E8 2,31E-2 78,78

A
nd

ré
 &

 P
er

ei
ra

16 el 6,232E3 2,621E8 9,42E-3 78,94

Table  2 – Pinned-end beam equation coefficients: first mode about deformed configuration

ω² ξ β γ α ω
(rad/s)

qeq/ θmax

2 el 2,598E4 -2,949E6 -1,545E-3 1,484E8 2,326E-1 161,2 10%
4 el 2,309E4 -2,915E6 -5,039E-4 2,440E8 7,398E-2 151,9 2,5%
6 el 2,268E4 -2,925E6 -2,747E-4 2,555E8 3,253E-2 150,6 1,1%
8 el 2,255E4 -2,928E6 -1,204E-4 2,593E8 2,134E-2 150,2 0,61%

A
nd

ré
 &

 P
er

ei
ra

16 el 2,244E4 -2,930E6 7,147E-7 2,629E8 6,992E-3 149,8 0,32%

Table  3 – Roller-end beam equation coefficients: first mode about reference configuration

ω² γ α ω
(rad/s)

Soares 1,3659E3 -3,0057E2 -2,2541E0 36,95

2 el 1,3767E3 1,64E7 2,16E-1 37,10
4 el 1,3667E3 2,33E7 7,34E-2 36,97
6 el 1,3661E3 2,42E7 3,18E-2 36,96
8 el 1,3661E3 2,45E7 1,80E-2 36,96

A
nd

ré
 &

 P
er

ei
ra

16 el 1,3667E3 2,48E7 3,42E-3 36,97

Table  4 – Roller-end beam equation coefficients: first mode about deformed configuration

ω² ξ β γ α ω
(rad/s)

qeq/θmax

2 el 2,20E3 -1,3E5 1,6E-3 1,636E7 2,7E-1 46,9 4,9%
4 el 1,49E3 -2,0E4 4,5E-4 2,333E7 7,9E-2 38,6 0,79%
6 el 1,41E3 -8,6E3 1,3E-4 2,417E7 3,2E-2 37,6 0,17%
8 el 1,39E3 -4,7E3 2,5E-4 2,448E7 2,1E-2 37,3 0,081%

A
nd

ré
 &

 P
er

ei
ra

16 el 1,37E3 -1,1E3 3,3E-2 2,479E7 5,0E-3 37,1 0,39%



As expected, the geometric non-linearities sensibly increased the rigidity of the pinned-
pinned beam in the vibrations about the deformed configuration, which did not happen at all
in the pinned-roller beam.

5. CONCLUDING REMARKS

The main goal in this procedure is to add non-linear behavior to the equation of free
vibrations of a simply supported beam through the influence of  flexural deformations on
longitudinal displacements and longitudinal deformation. This is accomplished by a twofold
approach: first and foremost, by not neglecting the stretching in both longitudinal and
transverse displacements, and second, by not neglecting the longitudinal displacements in the
kinetic energy. However, it should be stated that such an idea might not be very well suited to
assess vibrations about the reference configuration, once there is no longitudinal displacement
in those modes, and therefore the resulting function u1 will not describe that behavior properly
unless under a quite refined element mesh. Besides, the assumption of constant ε implies
discontinuous functions for both u1 and u2 and its derivatives.

These are some new results using finite-element model techniques, which will be further
detailed in a close future.
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